Rayat Shikshan Sanstha's

Annasaheb Awate Arts, Commerce and Hutatma Babu Genu Science College, Manchar

Department of Mathematics

Course Outcomes of Offered Courses:

Sr.No.	Course	Course Outcomes
1	F.Y.B.ScAlgebra and Analytical Geometry	 Upon successful completion of this course the student will be able to: Solve results involving divisibility and greatest common divisors; Solve systems of linear equations Apply Euler-Fermat's Theorem to prove relations involving prime numbers; Polynomial addition, subtraction, division, multiplication, roots of polynomials. Transformation, translation and reflection; To find nature of general conics. Find equation of spheres, cylinders and cones
2	F.Y.B.Sc Calculus I and Calculus II	Upon successful completion of this course the student will be able to:• Prove simple identities and inequalities• Be able to calculate limits• Be able to calculate limits at infinity• Be able to discuss the continuity• Be able to calculate limits in

		indotomainate formes have a second of
		indeterminate forms by a repeated use
		of L'Hospital's rule
		• Be able to use derivatives to find
		intervals on which the given function is
		increasing or decreasing
		• Understand the concept of Differential
		Equation
		• Be able to use Differential Equation to
		find Orthogonal Trajectories.
3	S.Y.B.Sc. (Sem III)	Upon successful completion of this course the
	Calculus of several variables	student will be able to:
		• Compute domain and range of functions
		• Draw level curves of functions
		• Find limits and continuity of functions
		• Find partial derivatives
		• Find higher derivatives
		• Compute chain rule in differentiation
		• Define functions of several variables
		and their limits
		• Calculate the partial derivatives of
		functions of several variables
		• Apply the chain rule for functions of
		several variables
		• Calculate the gradients and directional
		derivatives of functions of several
		variables
		• Solve problems involving tangent
		planes and normal lines
		• Determine the extrema of functions of
		several variables
		• Use the Lagrange multiplier method to
		find extrema of functions with
		constrains.

4	S.Y.B.Sc. (Sem III)	On successful completion of this course unit
	Numerical methods and its Applications	students will be able to:
		• Find errors
		• To rounding off numbers n significant
		digits, to n decimal places.
		• To find Solution of Algebraic and
		Transcendental Equations.
		• Use Interpolation to fit tabular data in
		algebraic equation.
		• Fit straight line, second degree
		polynomial from tabular data.
		• Find area under the curve by using
		Numerical Integration.
		• Find solution of first order ordinary
		differential equations.
5	S.Y.B.Sc. (Sem IV)	On successful completion of this course unit
	Linear Algebra	students will be able to:
		• Understand the basic ideas of vector
		algebra: linear dependence and
		independence and spanning;
		• Know how to find the row space,
		column space and null space of a
		matrix, and be familiar with the
		concepts of dimension of a subspace
		and the rank and nullity of a matrix, and
		to understand the relationship of these
		concepts to associated systems of linear
		equations;
		• Be familiar with the notion of a linear
		transformation and its matrix;
		• Find the Gram-Schmidt
		orthogonalization of a matrix.

6	S.Y.B.Sc. (Sem IV)	On successful completion of this course unit
	Vector Calculus	students will be able to:
		• Find limit and continuity of vector
		valued functions
		• Find derivatives of vector valued
		functions
		• Find integrals of vector valued
		functions
		• Find arc length along a space curve
		• Find line integral of scalar functions
		• Find line integrals of vector fields
		• Find work done and flow
		• Study divergence theorem, stokes
		theorem
		• Find surface integrals
7	T.Y.B.Sc. (Sem V)	The course will enable the students to:
	Metric space	• understand the introductory concepts
		of metric spaces
		• correlate these concepts to their
		counter parts in modern analysis by
		studying examples
		• learn to analyze mappings between
		spaces
		• attain background for advanced
		courses in real analysis, functional
		analysis, and topology.
		• appreciate the abstractness of the
		concepts such as open balls, closed
		balls, compactness, connectedness etc.
		beyond their geometrical
		imaginations.
		_

8	T.Y.B.Sc. (Sem V)	By the end of the course, students will be able
		to:
	Real Analysis I	• learn the basic facts in logic and set theory
		 learn to define sequence in terms of functions from N to a subset of R and to understand several properties of the real line recognize bounded, convergent, divergent, Cauchy and monotonic sequences and to calculate their limit superior, limit inferior, and the limit of a bounded sequence use the ratio, root, alternating series and limit comparison tests for convergence and absolute convergence of an infinite series of
		real numbers
9	T.Y.B.Sc. (Sem V)	On completion of this unit successful students will be able to:
	Crown theory	
	Group theory	 recognize the mathematical objects that are groups, and classify them as abelian, cyclic and permutation groups analyze consequences of Lagrange's theorem learn about structure preserving maps between groups and their consequences explain the significance of the notion of cosets, normal subgroups, and factor groups

10	T.Y.B.Sc. (Sem V)	On completion of this unit successful students
		will be able to:
	Ordinary Differential equation	• understand the genesis of ordinary
		differential equations.
		• learn various techniques of getting
		exact solutions of solvable first order
		differential equations and linear
		differential equations of higher order.
		• grasp the concept of a general solution
		of a linear differential equation of an
		arbitrary order and also learn a few
		methods to obtain the general solution
		of such equations.
11	T.Y.B.Sc. (Sem V)	The course will enable the students to:
		• Analyze and solve linear
	Operations research	programming models of real-life
		situations.
		• The graphical solution of LPP with
		only two variables, and illustrate the
		concept of convex set and extreme
		points. The theory of the simplex
		method is developed.
		• The relationships between the primal
		and dual problems and their solutions
		with applications to transportation,
		assignment and two-person zero-sum
		game problem.
12	T.Y.B.Sc. (Sem V)	On completion of this unit successful students
		will be able to:
	Number theory	• some of the open problems related to
		prime numbers.
		• about number theoretic functions and

		modular arithmetic.
		• the Law of Quadratic Reciprocity and
		other methods to classify numbers as
		primitive roots, quadratic residues,
		and quadratic non-residues.
13	T.Y.B.Sc (Sem VI)	Upon successful completion Complex Analysis,
	Complex analysis	a student will be able to:
		• Understand the significance of
		differentiability of complex functions
		leading to the understanding of
		Cauchy-Riemann equations.
		• Evaluate the contour integrals and
		understand the role of Cauchy-
		Goursat theorem and the Cauchy
		integral formula.
		• Expand some simple functions as their
		Taylor and Laurent series, classify the
		nature of singularities, find residues
		and apply Cauchy Residue theorem to
		evaluate integrals.
		• Represent functions as Taylor, power
		and Laurent series, classify
		singularities and poles, find residues
		and evaluate complex integrals using
		the residue theorem.
14	T.Y.B.Sc (Sem VI)	Upon successful completion of this course,
	Real Analysis II	students will be able to
		• some of the families and properties of
		Riemann integrable functions, and the
		applications of the fundamental
		theorems of integration.
		• beta and gamma functions and their

		properties.
		• recognize the difference between
		pointwise and uniform convergence of
		a sequence of functions.
		• illustrate the effect of uniform
		convergence on the limit function
		with respect to continuity,
		differentiability, and integrability.
15	T.Y.B.Sc (Sem VI)	The course will enable the students to:
	Ring theory	• The fundamental concept of Rings,
		Fields, subrings, integral domains and
		the corresponding morphisms.
		• Learn in detail about polynomial
		rings, fundamental properties of finite
		field extensions, and classification of
		finite fields.
		• Appreciate the significance of unique
		factorization in rings and integral
		domains.
16	T.Y.B.Sc (Sem VI)	Upon successful completion of this course,
	Partial differential equation	students will be able
		• formulate, classify and transform
		partial differential equations into
		canonical form.
		• solve linear partial differential
		equations using various methods and
		apply these methods in solving some
		physical problems.
		 solve Laplace equations using various
		analytical methods demonstrate
		uniqueness of solutions of certain
		kinds of these equations.

17	T.Y.B.Sc (Sem VI)	Upon successful completion of this course,
	Optimization techniques	students will be able to
		• understand fundamentals of Network
		Analysis using CPM and PERT.
		• solve a sequencing Problem for
		various jobs and machines.
18	T.Y.B.Sc (Sem VI)	Upon successful completion of this course,
	Computational geometry	students should
		• construct algorithms for simple
		geometrical problems.
		characterize invariance properties of
		Euclidean geometry by groups of
		transformations.
		• describe and construct basic geometric
		shapes and concepts by computational
		means.
19	Programming in Python	At the end of the course:
		• The student will be able to explain
		basic principles of Python
		programming language.
		• The student will implement object
		oriented concepts.
		• Demonstrate the use of Python in
		Mathematics such as operations
		research and computational Geometry
		etc.
		• Study graphics and design and
		implement a program to solve a real
		world problem.
		• The students will implement the

		concepts of data with python and
		database connectivity.
20	LaTeX for Scientific Writing	After studying this course the student will be
		able to:
		• Write a simple LaTeX input document
		based on the article class.
		• Turn the input document into pdf with
		the pdflatex program.
		• Format Words, Lines, and Paragraphs.
		• Understand how to present data using
		tables.
		• typeset mathematical formulas, use
		nested list, tabular and array
		environments.
		• import figures and pictures that are
		stored in external files.